= Sodeneinheit	scher Diens		
analoges Symbol der Bodeneinheit		L4510_L34	
auf der gedruckten Bodenkarte	L31		
Bodentyp		Parabrauner	de
Grundwasserstufe		Stufe 0 - ohne Grur	ndwasser
Staunässegrad		Stufe 0 - ohne Sta	unässe
	Bodenart nach K (und Gruppe nac	_	stark toniger Schluff (3 - tonig-schluffig)
Bodenartengruppe des Oberbodens	Bodenart (und G nach VD LUFA	ruppe)	schluffiger Lehm (4)
	Hauptbodenart nach BBodSchV		Lehm/Schluff
Bewertungen und Auswertungen zum E	Bodenschutz		
Schutzwürdigkeit der Böden (3. Auflage)		oden mit sehr hoher ngs- und Pufferfunk Bodenfruchtba	
Verdichtungsempfindlichkeit		mittel	
Kennwerte und Auswertungen für die la Naturschutz	ınd- und forstwir	tschaftliche Boder	nnutzung und für den
Wertzahlen der Bodenschätzung	68 bis 85	(**************************************	sehr hoch
Erodierbarkeit des Oberbodens	0,56		sehr hoch
effektive Durchwurzelungstiefe (die Bezugstiefe)	11	dm	sehr hoch
nutzbare Feldkapazität über die Bezugstiefe	193	mm	sehr hoch
Feldkapazität über die Bezugstiefe	363	mm	hoch
<mark>Luftkapazität</mark> über die Bezugstiefe	110	mm	mittel
Kationenaustauschkapazität über die Bezugstiefe	218	mol+/m²	hoch
Denitrifikationspotenzial	10 bis 30	kg N / ha /a	gering
kapillare Aufstiegsrate von Grundwasser in den Bezugsraum	0	mm/d	keine Nachlieferung
gesättigte Wasserleitfähigkeit im 2-Meter-Raum	14	cm/d	mittel
optimaler Flurabstand	sehr hod	ch - Grundwasser is	t nicht vorhanden
Wasserversorgung von Kulturpflanzen	G	rund- und Stauwas	
optimaler Flurabstand		ch - Grundwasser is	
Wasserversorgung von Kulturpflanzen		extrem hohe nutzb rund- und Stauwas	are Feldkapazitāt, ohne sereinfluss
Landwirtschaftliche Nutzungseignung aus bodenkundlicher Sicht		Weide und Ac	ker
Ökologische Feuchtstufe über die Bezugstiefe		sehr frisch	
Ziel-pH-Werte	Acker Grünland	6,8 schwach sa 5,9 mäßig sauer	uer bis neutral
Auswertungen für Baumaßnahmen	L		
Gesamtfilterfähigkeit in 2-Meter-Raum		gering	
<mark>Versickerungseignung</mark> in 2-Meter-Raum	ungeeignet - VS/	A, Mulden-Rigolen-S mit gedrosselter Al	Systeme (Bewirtschaftun bleitung)
<mark>Grabbarkeit</mark> in 2-Meter-Raum		im 1. Meter : mittel er : nicht oder extre nt grundnass und ni	m schwer grabbar
Eignung für Erdwärmekollektoren	mittlere Eignun	g für den Einsatz vo	on Erdwärmekollektoren
Korrosionswahrscheinlichkeit	gerin	nge Korrosionswahr	scheinlichkeit

GD

Versickerungseignung

Die vollständige dezentrale Versickerung von Niederschlagswasser gewinnt aufgrund der anwachsenden Flächenversiegelung zunehmend an Bedeutung. Ihr Ziel ist es, die natürliche Reinigung der Niederschlagswässer zu fördern, einer Verminderung der Grundwasserneubildung langfristig entgegenwirken und die Kläranlagen zu entlasten. Die Auswertung zeigt, in welchem Maße die Böden für eine Versickerung von Niederschlagswasser geeignet sind und welche Gründe gegebenenfalls einer Versickerung entgegenstehen. Sie soll als Erstabschätzung für die Planung von Versickerungsanlagen dienen und helfen, die notwendigen hydrologischen Untersuchungen vor Ort hinsichtlich des Umfangs und der Flächenauswahl effizient durchzuführen.

Wesentliche Eingangsgröße ist die mittlere gesättigte Wasserleitfähigkeit im 2-Meter-Raum. Böden mit zu geringer Lockergesteinsmächtigkeit, zu starkem Staunässeeinfluss oder zu hoch anstehendem Grundwasser bilden Ausschlussflächen für die vollständige Regenwasserversickerung. Staunasse Böden bergen, auch wenn sie bei nicht zu bindigen Substraten scheinbar akzeptable Wasserdurchlässigkeiten aufweisen, ein zu großes Risiko für die Einrichtung langfristig und witterungsunabhängig arbeitender Versickerungsanlagen. Sie werden daher entweder aus der Planung ausgeschlossen oder erfordern aufwendigere Maßnahmen mit unterirdischem Stauraum und eventuell gedrosselter Ableitung.

Der Bewertung der mittleren gesättigten Wasserleitfähigkeit liegen der Runderlass des Ministeriums für Umwelt, Raumordnung und Landwirtschaft NRW vom 18.5.1998 (MBI. NRW. 1998 S. 654, ber. 1998 S. 918) und die Grenzwerte des Arbeitsblattes A 138 der DWA (Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall, 2005) zugrunde, die hinsichtlich der Wasserdurchlässigkeit auf Wertebereichen aus dem Bauingenieurwesen basieren. Die vorliegende Auswertung bezieht sich jedoch auf den 2-Meter-Raum des kartierten Bodens, in dem andere Lagerungsverhältnisse als im tieferen Untergrund vorliegen. Das heißt, dass Böden durch pedogene oder auch biogene bzw. biogen stabilisierte Gefügebildung andere Häufigkeitsverteilungen der mittleren gesättigten Wasserleitfähigkeit aufweisen als strukturarme bis strukturfreie, rein mineralische Substrate, die im Bauingenieurwesen untersucht werden.

Daher wird die mittlere Wasserleitfähigkeit im wassergesättigten Boden hier für die vollständige Versickerung in drei Klassen eingestuft: "geeignet", "bedingt geeignet", "ungeeignet". Der Grenzwert zwischen "ungeeignet" und "bedingt geeignet" entspricht mit 5 • 10⁻⁶ m/s bzw. 43 cm/d (Die Umrechnungsfaktoren sind in Tabelle 1 und 2 dargestellt.) annährend der bodenkundlichen Grenze zwischen mittlerer Wasserleitfähigkeit (10 bis 40 cm/d) und hoher Wasserleitfähigkeit (40 bis 100 cm/d). Der Grenzwert zwischen "bedingt geeignet" und "geeignet" entspricht mit 1 • 10⁻⁵ m/s bzw. 86 cm/d der Obergrenze der bodenkundlich hohen Wasserleitfähigkeit und orientiert sich am Bemessungswert des Arbeitsblattes A 138 für die Flächenversickerung von "mindestens 2 • 10⁻⁵ m/s" bzw. 173 cm/d. Wenn dieser Grenzwert unterschritten wird oder staunasse Böden vorliegen, sind aufwändigere Bewirtschaftungen mit gedrosselter Ableitung notwendig.

In Abhängigkeit von den Bodeneigenschaften, die nach der Bodenkarte flächenhaft vorherrschen und das Verhalten des Bodens im Landschaftswasserhaushalt bestimmen, wird in <u>Tabelle 3</u> in Anlehnung an DWA Themenheft "Abkopplungsmaßnahmen in der Stadtentwässerung" (2007) der Einsatz folgender Maßnahmen zur Regenwasserbewirtschaftung abgeschätzt:

- die unmittelbare Versickerung mit Oberbodenpassage über die Fläche bzw. in Versickerungsmulden
- die Versickerung mit Rückhaltung mit Oberbodenpassage in Mulden-Rigolen-Systemen oder direkt in Rigolen oder Schächten
- die Versickerung ohne Oberbodenpassage mit Rückhaltung über Mulden-Rigolen-Elemente
- die gedrosselte Ableitung nach Passage von Mulden oder Rigolen (Mulden-Rigolen-Systemen)

15. .5 2019

Es ist darauf hinzuweisen, dass diese Erstbewertung der Böden für den Einsatz von Maßnahmen zur Regenwasserbewirtschaftung maßstabsbedingt keine grundstücksscharfe Darstellung und Planung zulässt, wenn nicht detailliertere Grundlagendaten wie die großmaßstäbige Bodenkarte oder Baugrundachten zu einzelnen Grundstücken zur Verfügung stehen.

Literatur

Abwassertechnische Vereinigung e. V. (ATV) (1990): Arbeitsblatt A 138: Bau und Bemessung von Anlagen zur dezentralen Versickerung von nicht schädlich verunreinigtem Niederschlagswasser; Gesellschaft zur Förderung der Abwassertechnik e. V. (GFA), St. Augustin.

Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V. (DWA) (2005): DWA-Arbeitsblatt DWA-A 138: Planung, Bau und Betrieb von Anlagen zur Versickerung von Niederschlagswasser, Hennef.

Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V. (DWA) (2007): DWA-Merkblatt DWA-M 153: Handlungsempfehlungen zum Umgang mit Regenwasser, Hennef.

Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V. (DWA) (2007) Themen: Abkopplungsmaßnahmen in der Stadtentwässerung, Hennef.

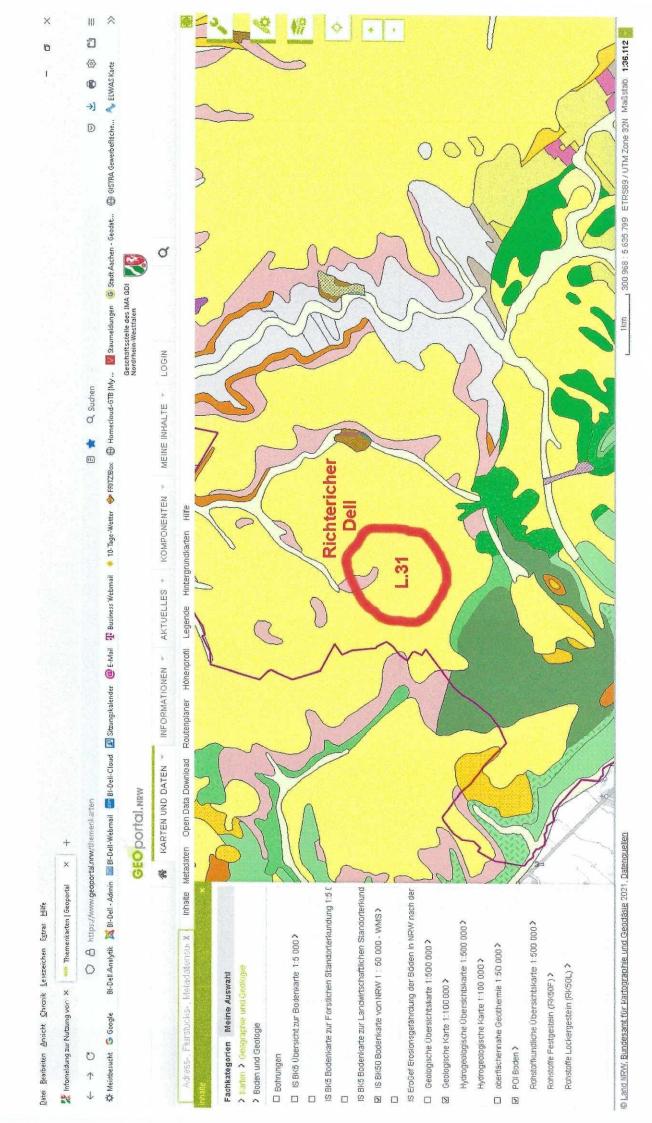
<u>Tabelle 1</u> Faktoren zur Umrechnung der Dimensionen der Wasserleitfähigkeit

von	nach	Faktor
cm * d ⁻¹	m * s ⁻¹	$10^{-2} / 24 / 60 / 60 = 1.1574 * 10^{-7}$
m * s ⁻¹	cm * d ⁻¹	10 ² * 24 * 60 * 60 = 8640000

<u>Tabelle 2</u> Beispiele für die Umrechnung der gesättigten Wasserleitfähigkeit

cm * d ⁻¹	m * s ⁻¹	m * s ⁻¹	cm * d ⁻¹
10	1,2 * 10-6	5 * 10 ⁻⁷	4,3
50	5,8 * 10 ⁻⁶	1 * 10-6	8,6
100	1,2 * 10 ⁻⁵	5 * 10 ⁻⁶	43,0
150	1,7 * 10 ⁻⁵	1 * 10 ⁻⁵	86,0
200	2,3 * 10 ⁻⁵	5 * 10 ⁻⁵	432,0
250	2,9 * 10 ⁻⁵	1 * 10-4	864,0

Tabelle 3 Bewirtschaftungsmaßnahmen durch Versickerung (V), Speicherung (S) und Ableitung (A) sowie die Farbzuweisung in der Karte Klassifikation, Bewertung, Beschreibung von Böden zur Eignung für eine vollständige dezentrale Versickerung oder für den Einsatz von Niederschlags-


Für die Farben werden zur Nachvollziehbarkeit auch die RGB-Farbwerte angegeben, für die Schraffuren gilt: $168\,0\,0$.

190 232 255	keine Versickerung möglich (kein unterirdischer Stauraum verfügbar)	grundnass	Grundwasserflurabstand weniger als 1 m	grundnass	sic_1
	VSA Mulden-Rigolen-Systeme (Bewirtschaftung mit gedrosselter Ableitung)	staunass	Staunässe im 2 m-Raum mittel, stark oder sehr stark	staunass	sic_2
232 190 255	keine Versickerung möglich (kein unterirdischer Stauraum verfügbar)	zu flach	Lockergestein *) unter 1 m mächtig	zu flach	sic_3
255 211 127	VSA Mulden-Rigolen-Systeme (Bewirtschaftung mit gedrosselter Ableitung)	ungeeignet	Wasserleitfähigkeit unter 5 * 10 ⁻⁶ m/s (unter 43 cm/d) Staunässe ohne	unter 43	sic_4
MOK.	VSA Mulden-Rigolen-Systeme (Bewirtschaftung mit gedrosselter Ableitung)	ungeeignet und schwach staunass	Wasserleitfähigkeit 5 * 10 ⁻⁶ bis 1 * 10 ⁻⁵ m/s (43 bis 86 cm/d) Staunässe schwach	43 bis 86 und schwach staunass	sic_5
245 245 122	VS Mulden-Rigolen-Elemente (Versickerung mit unterirdischem Stauraum)	bedingt geeignet	Wasserleitfähigkeit 5 * 10 ⁻⁶ bis 1 * 10 ⁻⁵ m/s (43 bis 86 cm/d) Staunässe (ohne)	43 bis 86	sic_6
des processos	V Flächen- und Muldenversickerung, auch Sickerbecken	geeignet und schwach staunass	Wasserleitfähigkeit über 1 * 10 ⁻⁵ m/s (über 86 cm/d) Staunässe schwach	über 86 und schwach staunass	sic_7
165245122	V Flächen- und Muldenversickerung, auch Sickerbecken	geeignet	Wasserleitfähigkeit über 1 * 10 ⁻⁵ m/s (über 86 cm/d) Staunässe ohne	über 86	sic_8
Farbzuweisung in der Karte	Bewertung für den Einsatz von Bewirtschaftungsmaßnahmen	Bewertung für die vollständige Versickerung	Beschreibung	Klasse	Code

Lockergestein ist hier definiert als unter 75 Vol.-% Festgestein und Grobboden Wenn über 75 Vol.-% Festgestein und Grobboden vorliegen und darin

a) mehr Grobboden als Festgestein, dann gilt das Material als Schutt und zählt auch noch zum Lockergestein

b) mehr Festgestein als Grobboden, dann gilt das Material als Festgestein

